EFFECTIVE RESULTS FOR POINTS ON CERTAIN
 SUBVARIETIES OF TORI

Attila Bérczes

(joint work with J.-H. Evertse, K. Győry and C. Pontreau)

Choose an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q}. Recall that the group of $\overline{\mathbb{Q}}$-rational points of the N-dimensional torus is

$$
\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})=\left(\overline{\mathbb{Q}}^{*}\right)^{N}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right): x_{i} \in \overline{\mathbb{Q}}^{*} \text { for } i=1, \ldots, N\right\}
$$

with coordinatewise multiplication, i.e., if $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)$ then $\mathbf{x y}=\left(x_{1} y_{1}, \ldots, x_{N} y_{N}\right)$. Denote by $h(x)$ the absolute logarithmic Weil height of $x \in \overline{\mathbb{Q}}$. Define the height and degree of $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right) \in\left(\overline{\mathbb{Q}}^{*}\right)^{N}$ by $h(\mathbf{x}):=\sum_{i=1}^{N} h\left(x_{i}\right)$, and $\left[\mathbb{Q}\left(x_{1}, \ldots, x_{N}\right): \mathbb{Q}\right]$, respectively. Let \mathcal{X} be an algebraic subvariety of $\left(\overline{\mathbb{Q}}^{*}\right)^{N}$ (i.e., the set of common zeros in $\left(\overline{\mathbb{Q}}^{*}\right)^{N}$ of a set of polynomials in $\mathbb{Q}\left[X_{1}, \ldots, X_{N}\right]$), and Γ a finitely generated subgroup of $\left(\overline{\mathbb{Q}}^{*}\right)^{N}$. We want to study the intersection of \mathcal{X} with any of the sets

$$
\begin{aligned}
& \bar{\Gamma}:=\left\{\mathbf{x} \in\left(\overline{\mathbb{Q}}^{*}\right)^{N}: \exists m \in \mathbb{Z}_{>0} \text { with } \mathbf{x}^{m} \in \Gamma\right\} \quad \text { (the division group of } \Gamma \text {), } \\
& \bar{\Gamma}_{\varepsilon}:=\left\{\mathbf{x} \in\left(\overline{\mathbb{Q}}^{*}\right)^{N}: \exists \mathbf{y}, \mathbf{z} \in\left(\overline{\mathbb{Q}}^{*}\right)^{N} \text { with } \mathbf{x}=\mathbf{y z}, \mathbf{y} \in \bar{\Gamma}, h(\mathbf{z})<\varepsilon\right\}, \\
& C(\bar{\Gamma}, \varepsilon):=\left\{\mathbf{x} \in\left(\overline{\mathbb{Q}}^{*}\right)^{N}: \exists \mathbf{y}, \mathbf{z} \in\left(\overline{\mathbb{Q}}^{*}\right)^{N}\right. \\
& \quad \text { with } \mathbf{x}=\mathbf{y z}, \mathbf{y} \in \bar{\Gamma}, h(\mathbf{z})<\varepsilon(1+h(\mathbf{y}))\},
\end{aligned}
$$

where $\varepsilon>0$.
We derive effective results for certain special classes of varieties \mathcal{X}. The classes of varieties we consider are such that they allow an application of logarithmic forms estimates. More precisely, we consider varieties in $\left(\overline{\mathbb{Q}}^{*}\right)^{N}$ given by equations $f_{1}(\mathbf{x})=0, \ldots, f_{m}(\mathbf{x})=0$ where each polynomial f_{i} is a binomial or trinomial.

